organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rongwei Guo, Jing Wu, Waihim Kowk, Jian Chen, Michael C. K. Choi and Zhongyuan Zhou*

Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China

Correspondence e-mail: bczyzhou@inet.polyu.edu.hk

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.004 Å R factor = 0.049 wR factor = 0.128 Data-to-parameter ratio = 20.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(S)-2,2'-Bis[bis(3,5-dimethylphenyl)phosphinoyl]-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl

The title compound, $C_{52}H_{56}O_2P_2$, was synthesized conveniently from (*S*)-2,2'-dihydroxy-5,5',6,6',7,7',8,8'-octahydro-1,1'binaphthyl and bis(3,5-dimethylphenyl)phosphine chloride in high yield. The molecule has crystallographic twofold rotation symmetry. Received 15 January 2002 Accepted 17 January 2002 Online 22 February 2002

Comment

Phosphinite ligands exhibit good-to-excellent enantioselectivity and high reactivity in the hydrogenation of prochiral olefins (Zhang *et al.*, 1998; Chan *et al.*, 1997). The phosphinite (I) can be conveniently obtained by reacting (S)-2,2'-dihydroxy-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (H8-BIN-OL) with bis(3,5-dimethylphenyl)phosphine chloride. Recent research shows that the phosphinite ligands derived from bis(3,5-dimethylphenyl)phosphine chloride exhibit higher enantioselectivity in the catalytic hydrogenation reaction than those derived from chlorodiphenylphosphine, because of the steric and electronic modulation of the substituent groups on the P atom (Trabesinger *et al.*, 1997; RajanBabu *et al.*, 1997). As part of our effort to investigate this phenomenon, we present the crystal structure of (I).

(I)

As shown in Fig. 1, the title molecule has crystallographic twofold rotation symmetry. The Csp^3-Csp^3 bonds C7–C8, C8–C9 and C9–C10 [1.476 (3), 1.441 (3) and 1.463 (3) Å, respectively] are shorter than the normal Csp^3-Csp^3 bond (1.51–1.55 Å) and differ significantly in length from the Csp^3-Csp^2 bonds C3–C7 and C4–C10 [1.513 (4) and 1.510 (4) Å, respectively] in the H8-naphthyl unit. Disorder, suggested to be due to the puckering of the ring, which is suggested by the high U_{eq} values of atoms C8 and C9.

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Experimental

All reactions were carried out under N₂ using Schlenk techniques. (S)-2,2'-Dihydroxy-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (0.30 g, 1.0 mmol) and 4-N,N-dimethylaminopyridine (15 mg) were mixed in a 50 ml round-bottomed Schlenk flask with a stir bar. The atmosphere was replaced with N2 several times, and 0.8 ml dry Et3N and 30 ml dry Et₂O were added. The mixture was cooled to 273 K with an ice-bath, followed by dropwise addition of bis(3,5-dimethylphenyl)phosphine chloride (0.6 ml, 2.5 mmol) overn 20 min. The solvent was removed under vacuum after stirring at room temperature for another 3 h. The residues were dissolved in 15 ml toluene and purified with a flash silica-gel column (30 ml toluene as eluent). Toluene was removed and 670 mg white solid obtained (yield: 87%). Colorless crystals suitable for X-ray diffraction were obtained by recrystallization from Et₂O/CH₂Cl₂ (5:1). ³¹P NMR (CDCl₃): δ 109.7. ¹³C NMR (CDCl₃): δ 21.39, 21.48, 23.22, 23.30, 27.80, 29.76, 115.28, 115.41, 127.36, 127.54, 127.65, 127.84, 129.09, 130.85, 131.01, 131.33, 137.03, 137.59, 142.11, 142.26. ¹H NMR (500 MHz, CDCl₃): δ 1.52–1.68 (m, 8H), 2.21 (s, 12H), 2.19 (s, 12H), 2.14-2.23 (m, 2H), 2.38-2.42 (m, 2H), 2.60-2.64 (m, 2H), 2.69-2.75 (*m*, 2H).

Crystal data

 $C_{52}H_{56}O_2P_2$ $M_r = 774.91$ Orthorhombic, $P2_12_12$ a = 13.1983 (18) Å b = 19.015 (3) Å c = 8.8486 (12) Å $V = 2220.7 (5) Å^3$ Z = 2 $D_x = 1.159 \text{ Mg m}^{-3}$

Data collection

Bruker CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.955, T_{max} = 0.965$ 15228 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.128$ S = 0.935134 reflections 253 parameters H-atom parameters constrained Mo $K\alpha$ radiation Cell parameters from 5442 reflections $\theta = 1-27.5^{\circ}$ $\mu = 0.14 \text{ mm}^{-1}$ T = 294 (2) K Block, colorless $0.34 \times 0.28 \times 0.26 \text{ mm}$

5134 independent reflections
3079 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.045$
$\theta_{\rm max} = 27.6^{\circ}$
$h = -17 \rightarrow 11$
$k = -24 \rightarrow 24$
$l = -11 \rightarrow 11$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0656P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 2216 Friedel pairs Flack parameter = -0.03 (12)

Figure 1

The molecular structure of (I), showing displacement ellipsoids at the 30% probability level.

Data collection: *SMART* (Bruker, 1995); cell refinement: *SMART*; data reduction: *SHELXTL-NT* (Bruker, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL-NT*; software used to prepare material for publication: *SHELXTL-NT*.

We thank The Hong Kong Polytechnic University ASD Fund for financial support of this study.

References

Bruker (1995). SMART (Version 5.0) and SHELXTL-NT (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

- Chan, A. S. C., Zhang, F. Y. & Yip, C. W. (1997). J. Am. Chem. Soc. 119, 4080– 4081.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- RajanBabu, T. V., Ayers, T. A., Halliday, G. A., You, K. K. & Calabrese, J. C. (1997). J. Org. Chem. 62, 6012–6028.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Trabesinger, G., Albinati, A., Feiken, N., Kunz, R. W., Pregosin, P. S. & Tschoerner, M. (1997). J. Am. Chem. Soc. 119, 6315–6323.

Zhang, F. Y., Pai, C. C. & Chan, A. S. C. (1998). J. Am. Chem. Soc. 120, 5808– 5809.